# Codex and IPCS Risk Assessment Framework: A Case Study on Benzoates

Maia Jack, Ph.D., VP, Science & Regulatory Affairs <u>mjack@ameribev.org</u>





### Jun 9, 2017 IFIC's Monthly Member Update "When is Too Much Not Enough?"

"... [W]e are gorging ourselves on food information, but **we're starving for nutritional literacy**."

"In a media environment where <u>sound science takes a</u> <u>back seat to slick headlines</u>, ... without reliable information about food, <u>public health challenges</u> such as obesity, food safety, and chronic diseases will be <u>much</u> <u>more difficult to overcome</u>."

- Joseph Clayton, CEO



INTERNATIONAL FOOD INFORMATION COUNCIL FOUNDATION

2017 FOOD & HEALTH SURVEY

# Agenda

- Importance of Science in Regulatory Decision-Making
- CCFA Benzoate Background
- ICBA 2016 Benzoates Investigation
  - Exposure
  - ADI Considerations
- Key Takeaways
- Appendix
  - How is safety of food additives established?
    - Risk characterization
    - Comparing NOAEL, ADI & EDI
  - ICBA Refined Benzoate EDI Assumptions
  - Suggested Revisions to ADI Interspecies Pharmacokinetics Differences

# Importance of Science in Regulatory Decision-Making

### **Codex Alimentarius**

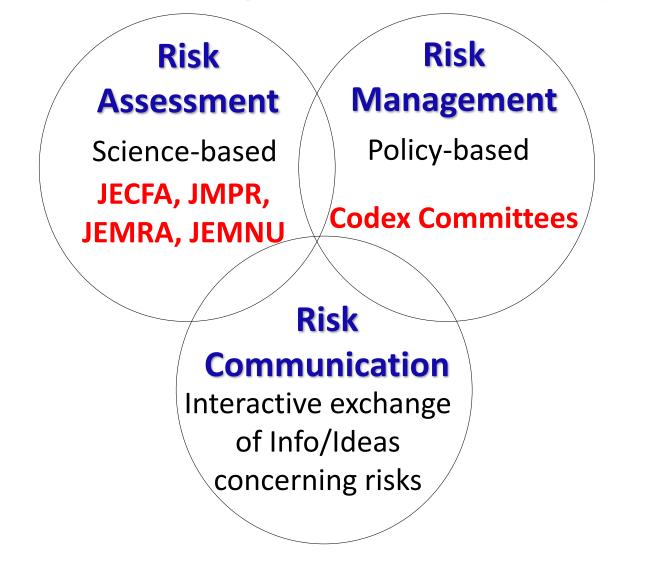


1963 Joint UN FAO/WHO Food Standards Programme Dual Mandate



#### Science-based policies

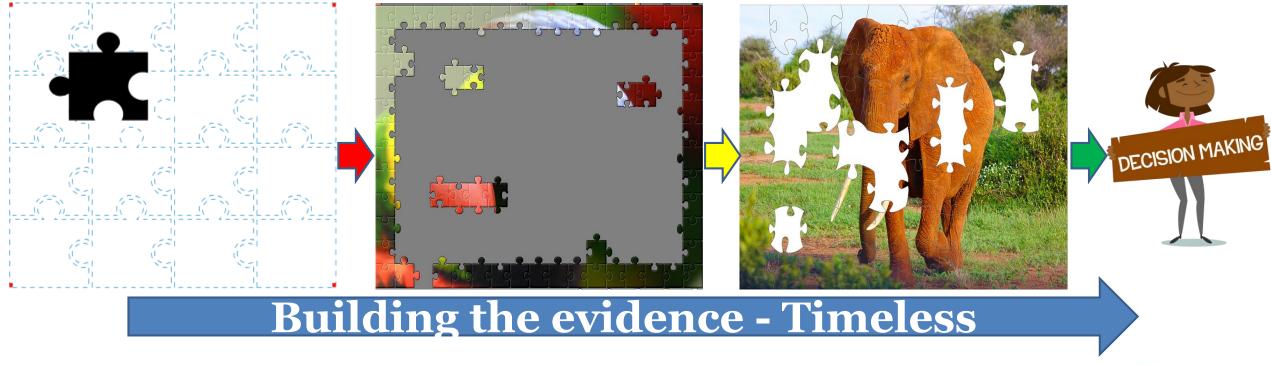





### Here is what Codex standards attempt to do...

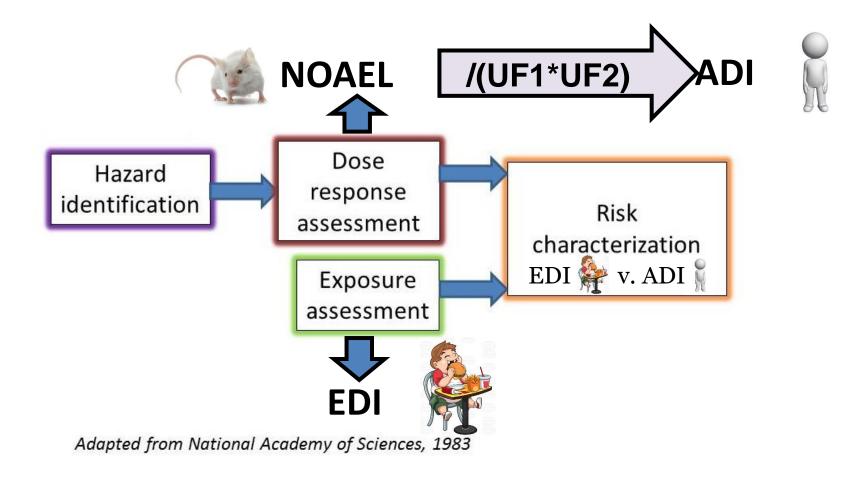





### WHO Risk Analysis Framework (1987)






# **Science jigsaw – Piecing it together**

### **One study** Limited evidence Clear evidence





### Risk assessment



### **Risk assessment - Hazard ID and Characterization**

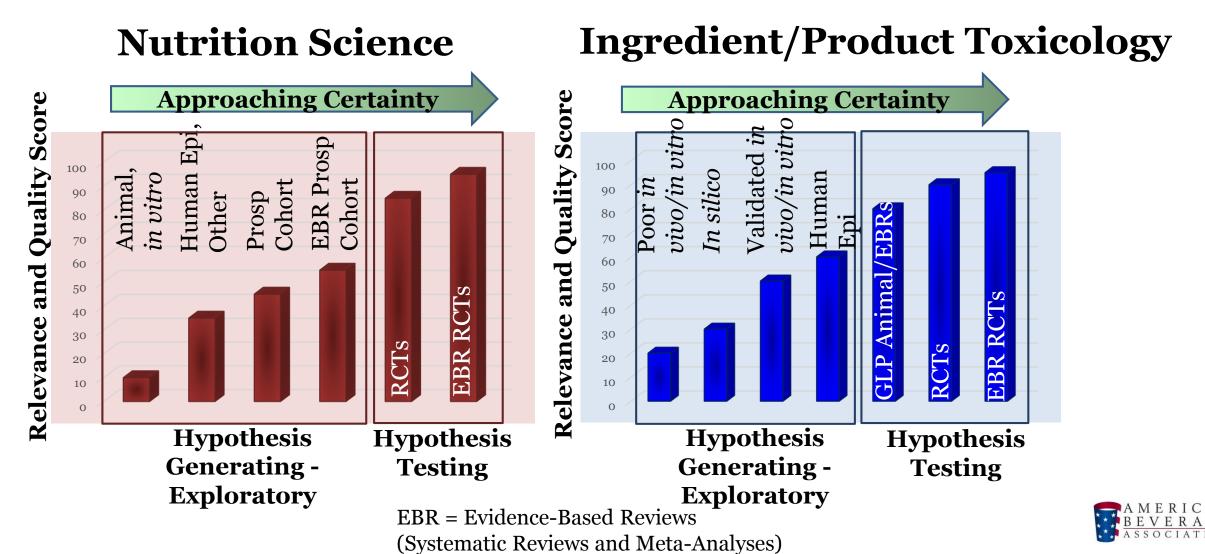
 Human studies (e.g., epidemiological – i.e., RCTs, observational cohort, crosssectional, case-control; surveillance; etc.)

Hazard

identification

response

assessmen


assessmen

Risk

characterization

- Animal toxicological studies (human surrogate)
  - Wide range of endpoints (observational, functional, biochemical and pathological)
  - Two species (e.g., mice and rats) and both sexes (F/M)
  - Testing relevance to human exposure model, route, frequency, duration, vehicle (e.g., diet, gavage, water)
  - Toxicity Testing
    - General Systemic Toxicity
    - Short-term (acute toxicity, subchronic toxicity)
    - Genotoxicity (DNA-reactive)
    - Carcinogenicity (long-term)
    - Reproductive/developmental toxicity prenatal/postnatal in parents/offsprings and subsequent offspring development (equivalencies across species; maternal toxicity considerations)
    - Target Organ Toxicity
    - Additional testing if necessary (e.g., neurotoxicity, immunotoxicity, allergenicity via decision-tree approaches
      gastrointestinal considerations, etc.)
    - Mode of Action

# How does science stack up?



# **Scientific Weight of Evidence Relevance, Quality and Quantity**



"In the evaluation of human health risks, sound human data, whenever available, are preferred to animal data. Animal and *in vitro* studies provide support and are used mainly to supply evidence missing from human studies."

POOR QUALITY LOW RELEVANCE STUDIES **LIABILITIES**)

No frame of reference Confounders Hazard Assessment

World Health Organization

"Critical evaluation of study designs and their findings and interpretation of the **GOOD ROBUST** results are the most GCP-and/or **important steps** in **risk GLP**-compliant assessment."

of Gheoricals in Loop

#### Informed policy and regulatory decision-making

STUDIES

(ASSETS)

**Refined Assumptions** 

**Risk Assessment** 

Context

### IPCS Risk assessment - Exposure Assessment

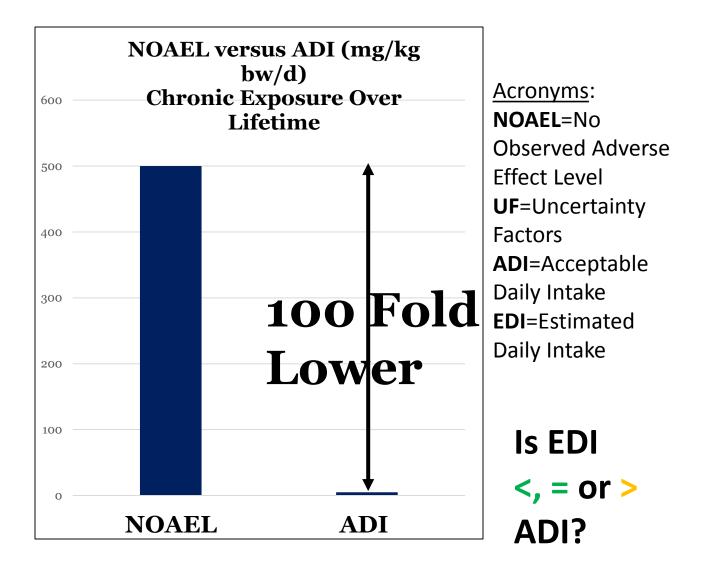
- Individual dietary survey data (most precise)
- Additive concentration only for proportion of market used in (not whole food category)

Hazard

identification

response

Exposure assessmer


Adapted from National Academy of Sciences

Risk characterization

- Brand loyalty
- Chronic dietary 'usual' exposure 90<sup>th</sup> percentile "consumers only" often represents high consumers
- Dietary exposure to additive predominantly influenced by one food, use selected individual foods approach
- Model accuracy food consumption data and food chemical concentration data applied to same specified food;
- Representative national populations to understand international situation
- <u>Chronic</u> exceedance <u>over lifetime</u>

## IPCS Risk assessment - Risk Characterization Comparing NOAEL, ADI & EDI

- NOAEL (over lifetime)
- Traditional ADI = NOAEL/100 (UFs)
- Opportunity exists to lower UF based on CSAF to derive evidence-based ADI
- EDI = Daily food consumption pattern x Additive Use Levels in Foods (per person)



Dose

response

assessment

Exposure assessmen

Adapted from National Academy of Sciences, 198.

haracterizatio

Hazard

identification

# **CCFA Benzoate Background**

### **Benzoate Technological Justification**

- Propensity for microbial spoilage in beverages not well understood or appreciated
  - GHP, HACCP and GMP ALWAYS
  - Ubiquitous microflora 100% sterile environment impossible
  - ALL tools needed to minimize risk of spoilage in beverages
- Product-to-product differences determine *whether*, *which* and *at what levels* preservatives are necessary
  - Beverage formulations, packaging, processing, storage and distribution conditions and inherent microflora
- Micro-challenge tests to assure functionality
  - Levels < Minimum Inhibitory Concentrations (MIC) can cause adaptation, acquired resistance and tolerance
- Example: strawberry flavor <u>concentrate</u> (not poor hygiene) origin of *Asaia Lannensis* acetic acid bacteria in spoiled strawberry-flavored beverage in spite of presence of 200 mg/kg benzoate
  - Kregiel, D., A. Rygala, Z. Libudzisz, P. Walczak, E. Oltuszak-Walczak. Asaia lannensis the spoilage acetic acid bacteria isolated from strawberry-flavored bottled water in <u>Poland</u>. Food Control 26 (2012): 147-150.
- No good substitutes for benzoates
  - Sorbates less effective, generate off-notes and present operational impediments (fountain systems)

### 2015 JECFA Assessment Triggered Safety Concern at Codex

- Estimated daily intake (EDI) among toddlers and young children at presumed 95<sup>th</sup> percentile consumer-only population exceeded Acceptable Daily Intake (ADI)
  - In fact, the 97.5<sup>th</sup> percentile exposure from South African toddlers/young children 'consumers only' was actually used, NOT the 95<sup>th</sup> percentile (let alone the 90<sup>th</sup> percentile).
- As a result, 2016 CCFA lowered benzoate levels in beverages by as much as 75% in some cases to 250 ppm as benzoic acid which has created significant challenges

• Opportunities exist to refine assumptions both on exposure and hazard

International Council of Beverages Associations (ICBA) 2016 Benzoates Investigation Exposure (EDI) & Hazard (ADI)

### Exposure Assessment - Refined Benzoate Estimated Daily Intake (EDI)

2016 ICBA exposure assessment approach meets and exceeds WHO Principles (EHC 240)

- Individual dietary survey data (most precise)
- Representative use levels based on market presence
- Brand loyal 95<sup>th</sup> percentile consumer 'worst-case' scenario considered

### (standard is typically 90<sup>th</sup> percentile)

Individual foods approach – beverages (primary contributor to dietary benzoates)

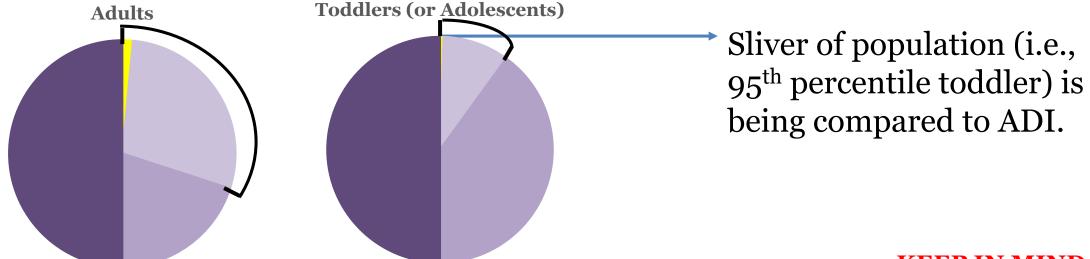
- Accurate model specific uses for specific beverage types
- Selected representative national markets to ensure adequate global protection
- No chronic exceedance of ADI, even for worst-case scenario

### Refined Benzoate Estimated Daily Intake (EDI)

- Study Design
  - Countries included with ML > 250 mg/kg
    - Brazil, Canada, Mexico and U.S.A.
  - Designed to capture high intake populations
- Modelling Approaches
  - Individual-based data reflective of individual consumption patterns
    - Allows population breakdown by 'general population (per capita)'; 'consumers-only'; mean & 95<sup>th</sup> percentile; 'age breakouts;
    - Probabilistic modelling (based on market volume share)
    - Brand-loyal consumer modelling (worst-case scenario max. level to main contributing category (i.e., regular CSD), market-weighted average to all others)
  - Probabilistic models and non-brand loyal categories data based on market volume share.

Martyn, D., A. Lau and A. Roberts. 2017. Benzoates intakes from non-alcoholic beverages in Brazil, Canada, Mexico and the United States. Food Additives and Contaminants. Part A, 34:9, 1485-1499. https://doi.org/10.1080/19440049.2017.1338836

### **Refined Benzoate ADI**


Adapted from National Academy of Sciences, 1983

response

Exposure assessme Risk characterization

Hazard

identification

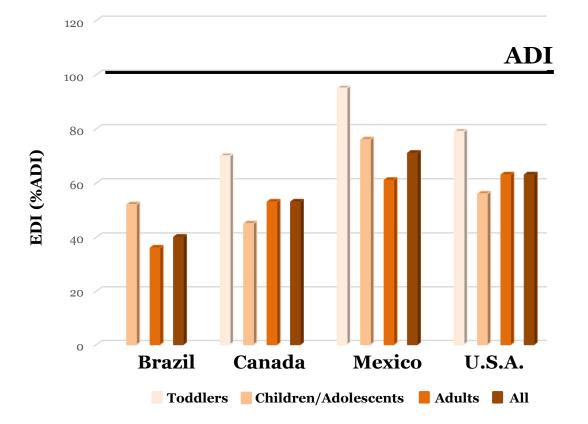


#### **KEEP IN MIND –**

>95<sup>th</sup> Adults consumers
 ≤95<sup>th</sup> Adults consumers
 All other consumers
 Non-consumers

#### ><u>95<sup>th</sup></u> Toddlers (or Adolescents) consumers

- ≤95<sup>th</sup> Toddlers (or Adolescents) consumers
- All other consumers
- Non-consumers

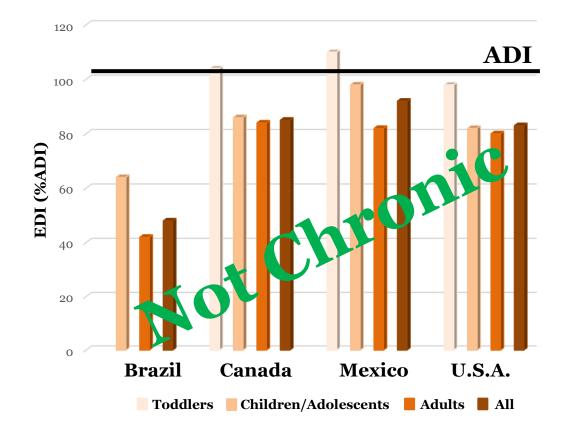

EHC 240 suggests high consumers are represented by the 90<sup>th</sup> percentile.



### **Refined Benzoate EDI**

#### EDI (%ADI) Over Life Stages - Probabilistic

95<sup>th</sup> Percentile - Benzoate Consumers






### **Refined Benzoate EDI**

#### EDI (%ADI) Over Life Stages - Brand Loyal

#### 95<sup>th</sup> Percentile - Benzoate Consumers



KEEP IN MIND –

**Represented here is:** 

- The 95<sup>th</sup> percentile consumer, NOT the 90<sup>th</sup> percentile
- 100% presence at Codex ML is assumed for regCSD to capture 'brand-loyalty', NOT market-distribution

ADI incorporates <u>default</u> <u>100x uncertainty factor</u> from <u>'default' no</u> <u>observed adverse effect</u> <u>level</u> in rodents across a <u>lifetime</u>.



### Refined Benzoate Estimated Daily Intake (EDI)

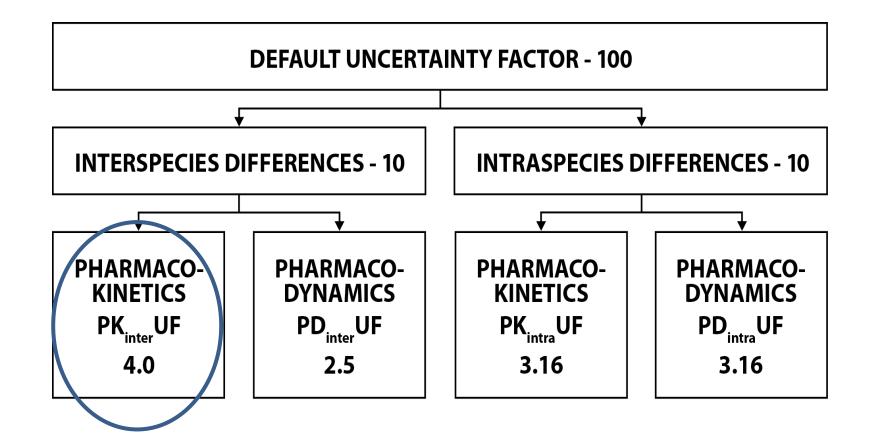
- EDI from beverages "No Safety Concern"
  - Based on 'high intake' markets
  - Refined complex exposure assessment model, using primarily individual dietary survey data
    - Market volume weighted use level information representative of realistic consumer practices
  - Findings:
    - Toddlers/Young Children regular CSD brand loyal 95<sup>th</sup> percentile scenario results <u>at</u> ADI
    - Over a lifetime, EDI is below ADI supports benzoate's long-term safe use
- Please see Appendix

### Hazard Characterization - ADI Considerations

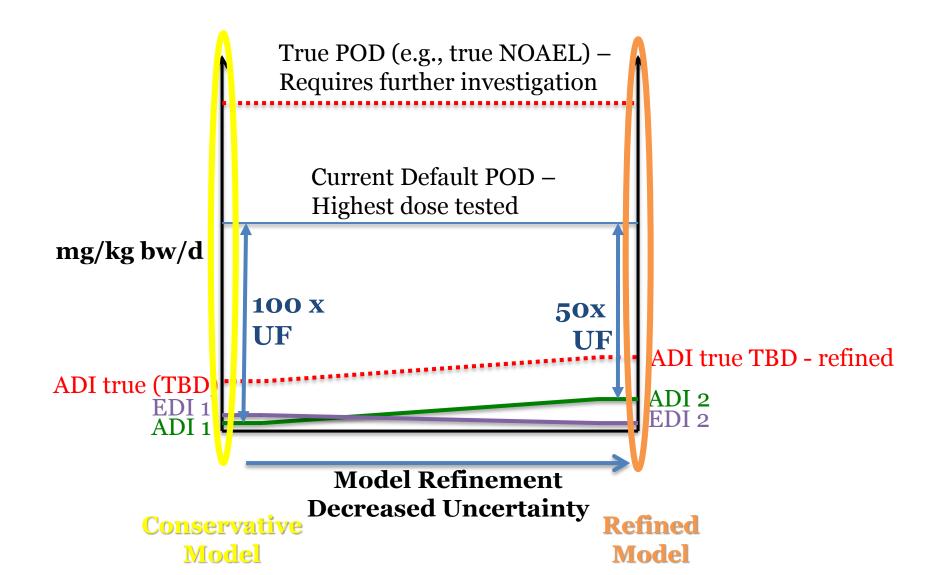
- Current JECFA ADI for Benzoates as Benzoic Acid Conservative
  - "Default" No Observed Adverse Effect Level (NOAEL) the highest dose tested – in pivotal study to derive ADI (Conservative)
  - ADI not based on a "true" NOAEL could have been higher!
  - Utilized 100X uncertainty factor (UF) from the *default* NOAEL
  - 100X Uncertainty Factor (Conservative)
    - Benzoic Acid metabolized and excreted similarly in rodents and humans – little interspecies pharmacokinetic variation suggests opportunity to reduce uncertainty factor by at least 2x
    - Opportunity to increase ADI two-fold, by reducing 100X UF to 50X UF
  - Current: 0-5 mg/kg bw/day
  - Possibly higher?

Hoffman, T.E., and W.H. Hanneman. 2017. Physiologically-Based Pharmacokinetic Analysis of Benzoates in Rats, Guinea Pigs and Humans: Implications for Estimating Interspecies Uncertainty Factors in Risk Assessments. *Computational Toxicology* 3:19-32 (https://doi.org/10.1016/j.comtox.201 7.06.002)

Zu, K., D.M. Pizzurro, T.A. Lewandowski and J.E. Goodman. Pharmacokinetic Data Reduce Uncertainty Regarding the Acceptable Daily Intake for Benzoic Acid and Its Salts. *Regulatory Toxicology and Pharmacology.*89: 83-94. (https://doi.org/10.1016/j.yrtph.2017. 07.012)


| Endpoint                                    | Human                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rate/Extent of Absorption                   | <ul> <li>Approximately 100% absorption after oral<br/>ingestion (e.g., Informatics, Inc., 1972 216-<br/>5980; IOMC, 2000 216-4218)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Approximately 100% absorption after oral<br/>ingestion (e.g., Informatics, Inc., 1972 216-<br/>5980; IOMC, 2000 216-4218)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                    |
| Rate/Extent of<br>Metabolism                | <ul> <li>Rapidly and completely metabolized<br/>(Informatics, Inc., 1972 216-5980; IOMC,<br/>2000 216-4218; Tremblay and Qureshi,<br/>1993 216-5939)</li> <li>Peak plasma benzoic acid levels at 1-2<br/>hours after oral administration (Kubota et<br/>al., 1988 216-5932; Kubota and Ishizaki,<br/>1991 216-5930)</li> </ul>                                                                                                                                                                                               | <ul> <li>Rapidly and completely metabolized<br/>(IOMC, 2000 216-4218; Bridges et al.,<br/>1970 216-5986; Thabrew et al., 1980 216-<br/>5984)</li> <li>Peak plasma benzoic acid levels 3 hours<br/>after oral gavage administration (Adams et<br/>al., 2005 216-5922; JECFA, 1996 216-<br/>4405)<sup>a</sup></li> </ul>                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                    |
| Metabolites<br>and Metabolic<br>Enzymes     | <ul> <li>Hippuric acid is the primary metabolite<br/>(Informatics, Inc., 1972 216-5980; IOMC,<br/>2000 216-4218; Tremblay and Qureshi,<br/>1993 216-5939)</li> <li>At high doses (&gt;500 mg/kg), benzoyl<br/>glucuronide is a secondary metabolite<br/>(Kubota and Ishizaki, 1991 216-5930;<br/>JECFA, 1996 216-4405)</li> <li>Metabolism driven by conjugation with<br/>glycine; saturable process at high doses<br/>(i.e., ≥160 mg/kg) (Kubota et al., 1988 216-<br/>5932; Kubota and Ishizaki, 1991 216-5930;</li> </ul> | <ul> <li>Hippuric acid is the primary metabolite<br/>(Bridges et al., 1970 216-5986; Thabrew et<br/>al., 1980 216-5984)</li> <li>At high doses (&gt;500 mg/kg),<sup>b</sup> benzoyl<br/>glucuronide is a secondary metabolite<br/>(Adams et al., 2005 216-5922; JECFA, 1996<br/>216-4405)</li> <li>Metabolism driven by conjugation with<br/>glycine; saturable process at high doses<br/>(i.e., &gt;120 mg/kg) (Schwab et al., 2001<br/>216-5938; Gregus et al., 1992 216-7049;<br/>Simkin and White, 1957 216-6010; JECFA,</li> </ul> |                                                                                                                                                                                                                                                                                                                    |
| Rate/Extent of<br>Elimination/<br>Clearance | <ul> <li>MacArthur et al., 2004 216-4214)</li> <li>75-100% excreted as hippuric acid within 6-24 hours (Kubota et al., 1988 216-5932; Kubota and Ishizaki, 1991 216-5930)</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>1996 216-4405)</li> <li>75-100% excreted as hippuric acid within 24 hours (Bridges et al., 1970 216-5986; Thabrew et al., 1980 216-5984)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | Zu, K., D.M. Pizzurro, T.A.<br>Lewandowski and J.E. Goodman.<br>Pharmacokinetic Data Reduce<br>Uncertainty Regarding the<br>Acceptable Daily Intake for<br>Benzoic Acid and Its Salts.<br><i>Regulatory Toxicology and</i><br><i>Pharmacology</i> . 89:83-94.<br>(https://doi.org/10.1016/j.yrtph.2<br>017.07.012) |






Adapted from National Academy of Sciences, 1983

### UF & CSAF - IPCS 2005



### **Benzoate Risk Characterization – Model Refinement**





### Next Steps

• ABA 2020 Goal - Update benzoate safety point of departure (PoD) to derive an appropriate ADI

- Benzoate tox research plan developed
- Research initiated, early 2018

# Key Takeaways

### **Key Takeaways**

• Regional differences should not preclude support for science-based positions in Codex

- ICBA updated and refined benzoate exposure assessment for beverages shows benzoates in beverages pose no safety concern based on:
  - 'High intake' markets setting ceiling for exposures
  - Application of WHO EHC 240 criteria (including representativeness)
  - Chronically, EDI is below current 'default' ADI supports long-term safe use;
  - Toddlers/Children reg CSD brand loyal 95<sup>th</sup> percentile scenario <u>at</u> ADI;
  - ADI based on default NOAEL (**not true NOAEL**) i.e., true ADI could be higher.
- Additionally, uncertainty factor for interspecies pharmacokinetic variability can be reduced by at least 2-fold (**possibly increase ADI** by at least 2x, from 5 to 10 mg/kg bw/d)
- Reductions to (or below) 250 mg/kg (as benzoic acid) are not scientifically warranted examples of unintended consequences may include:
  - Increased spoilage/food waste;
  - Reduction in product shelf-life;
  - Disproportionate impact on smaller manufacturers.

### Key Takeaways

#### **Consumers deserve accurate ingredient safety information.**

- We must *provide clear context around ingredient safety* in view of propensity for media sensationalism
  - Communicate and contextualize ingredient safety properly to reassure consumers

- We must *manage uncertainty* appropriately:
  - With generally accepted toxicological principles
  - And using <u>reasonable</u> assumptions

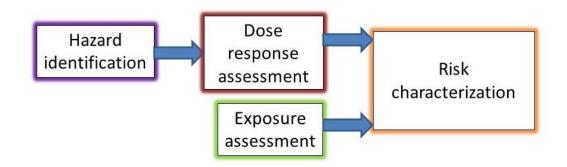
### **Thank You**

34

Maia Jack, Ph.D., VP, Science & Regulatory Affairs American Beverage Association <u>mjack@ameribev.org</u> 202-463-6756

# Appendix

### How is safety of food additives established?

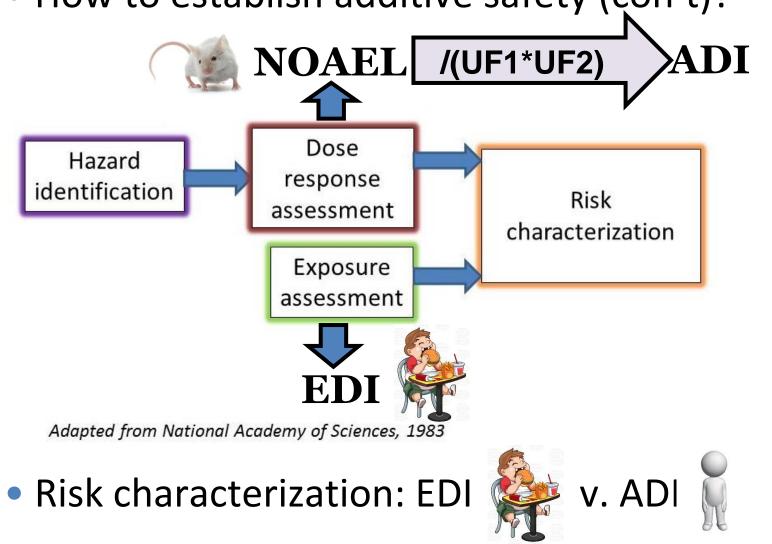

### **Risk characterization** Fundamentals of Food Additive Safety

• Dose makes the poison (Paracelsus)



Significant Electrolyte = Death Imbalance

How to establish additive safety?

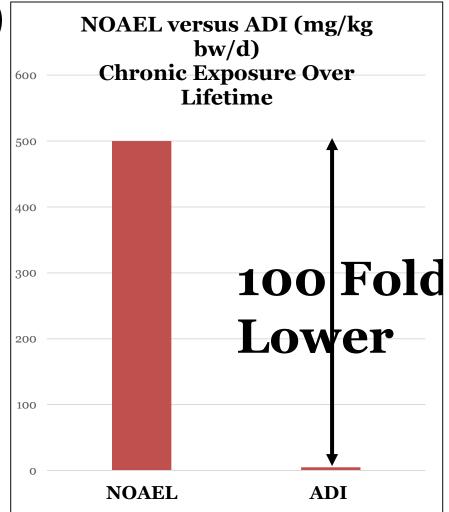



### **Risk characterization**

- How to establish additive safety (con't)?
  - Toxicology in rodents as surrogate for humans
  - Point of Departure (POD) may be No Observed Adverse Effect Level (NOAEL)
    - Incorporate precaution to extrapolate findings from rodents to humans - uncertainty factor UF1, traditionally 10x, lowered based on evidence
    - Incorporate precaution to account for human variability - uncertainty factor UF2, traditionally 10x, lowered based on evidence
  - Health-based guidance value is Acceptable
     Daily Intake (ADI) = NOAEL/(UF1xUF2)
  - Estimate risk by comparing the estimated daily intake (EDI) to ADI

### **Risk characterization**

• How to establish additive safety (con't)?





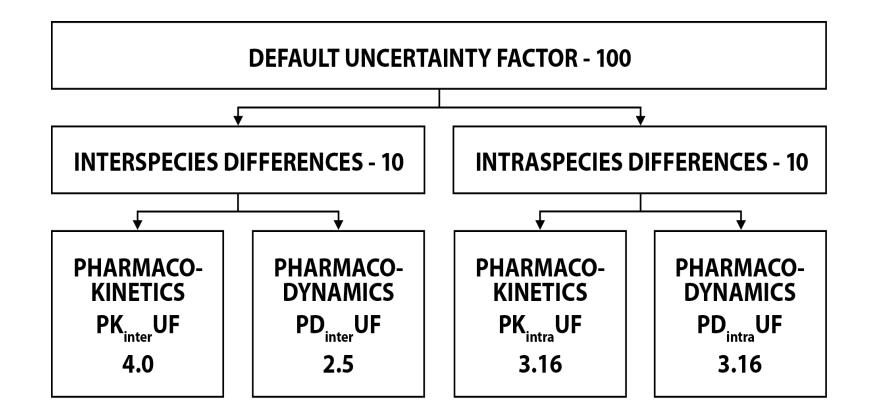

Adapted from National Academy of Sciences, 1983

### Risk Assessment - <u>Hazard Characterization</u> Comparing NOAEL and ADI

- NOAEL (over lifetime)
- Traditional ADI = NOAEL/100 (UFs)
- Opportunity exists to lower UF to derive ADI based on evidence
- EDI = Daily food consumption pattern x Additive Use Levels in Foods (per person)



Adapted from National Academy of Sciences, 198.


Hazard identification Laposare assessment Laposare





Adapted from National Academy of Sciences, 1983

### UF & CSAF - IPCS 2005



### Risk assessment - Exposure Assessment

Hazard identification Exposure assessment Basessment

Adapted from National Academy of Sciences, 1983

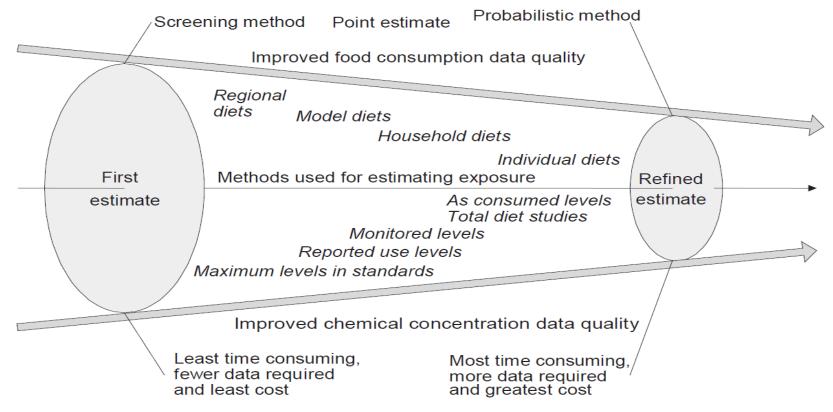
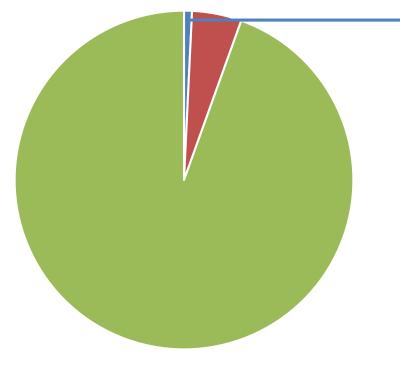




Fig. 6.1. Stepwise approach to obtaining realistic dietary exposure assessments

### Risk assessment - <u>Exposure Assessment</u> Estimated Daily Intake (EDI)



This sliver of the population (extreme outliers) - 95<sup>th</sup> percentile toddler/young children consumers - is being compared to ADI.

Hazard

identification

response

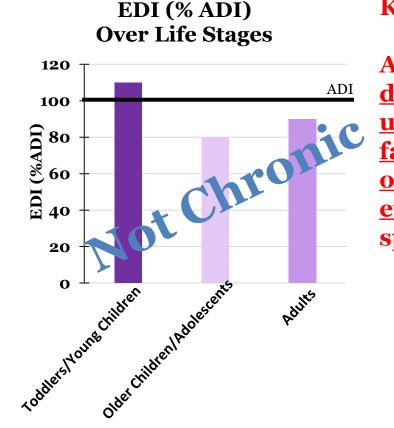
Exposure

assessmen

Adapted from National Academy of Sciences, 198.

Risk characterization

**KEEP IN MIND –** 


EHC 240 suggests high consumers are represented by the <u>90<sup>th</sup> percentile</u>.

- Toddler/Children > 95th Perc.
- Gen Pop'n > 95th Perc.
- Total Pop'n

Hazard identification Dose response assessment Risk characterization Exposure assessment

### Risk Assessment - <u>Risk Characterization</u> Compare NOAEL/ADI/EDI-Interpreting EDI against ADI?

- EDI ≤ ADI
  - No further exposure refinement necessary
- EDI > ADI
  - Specific subpop?
  - Further refinement needed to seek more realistic scenarios
  - Verify exceedance across ALL life-stages
  - Is ADI exceedance chronic across ALL lifestages? No! Stop. No safety concern.



#### **KEEP IN MIND –**

ADI incorporates default 100x uncertainty factor from no observed adverse effect level in test species.

### **ICBA Refined Benzoate EDI Assumptions**

| WHO EHC 240                                | ICBA 2016 Approach                              | 80 <sup>th</sup> JECFA                                                         | EFSA 2016                                                                        |
|--------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Individual dietary survey data -           | Individual dietary records                      | Primarily population-based Summary                                             | Population-Based Summary statistics                                              |
| most precise                               |                                                 | Statistics - CIFOCOOss                                                         |                                                                                  |
| Additive concentration only for            | "Representativeness"                            | Maximum of typical range (i.e., 209 mg/L)                                      | No market representativeness                                                     |
| proportion of market used in,              | Market volume weighted use                      | applied to entire 14.1.4 beverage category                                     | Maximum levels from very specific foods applied to                               |
| not whole food category                    | level information                               | (no market representativeness)                                                 | broader category<br>(Examples for children/adolescents:                          |
|                                            | Applied to specific beverage                    |                                                                                | <ul> <li>Crangon 3,800 ppm to 9.2. processed fish/fish</li> </ul>                |
|                                            | types within 14.1.4.                            |                                                                                | products category;                                                               |
|                                            |                                                 |                                                                                | • Level of 150 ppm applied to entire 14.1.4. flavoured drinks category;          |
|                                            |                                                 |                                                                                | Example for infants/toddlers:                                                    |
|                                            |                                                 |                                                                                | Non-heat treated dairy-based desserts 117 ppm to                                 |
|                                            |                                                 |                                                                                | entire 1.4. flavoured fermented milk products                                    |
| Brand loyalty                              | Brand-loyal 95 <sup>th</sup> percentile         | -                                                                              | category when mean only 5 ppm!)<br>Brand-loyal consumers to <u>multiple</u> food |
|                                            | consumer to regCSD at all pHs                   |                                                                                | categories – overly conservative                                                 |
| Chronic dietary exposure, 90 <sup>th</sup> | <ul> <li>Per capita/"consumers only"</li> </ul> | • Per capita/ "consumers only"                                                 | <ul> <li>Per capita/ "consumers only"</li> </ul>                                 |
| percentile "consumers only"                | <ul><li>Age subgroups</li></ul>                 | <ul> <li>Age subgroups</li> </ul>                                              | <ul> <li>Age subgroups</li> </ul>                                                |
| often represents high                      | • 95 <sup>th</sup> percentile                   | • 95 <sup>th</sup> percentile                                                  | • 95 <sup>th</sup> percentile                                                    |
| consumers                                  | <ul> <li>All beverages</li> </ul>               | All beverages                                                                  | <ul> <li>All foods, multiple major contributors</li> </ul>                       |
|                                            | Major contributing beverage                     |                                                                                | , , , , <b>r</b> , , , , , , , , , , , , , , , , , , ,                           |
|                                            | (i.e., Reg CSD)                                 | (NOTE: 10.9 mg/kg bw/d upper bound in young                                    |                                                                                  |
|                                            |                                                 | children 1-7 yrs was established for "consumers only"                          |                                                                                  |
|                                            |                                                 | based on <u>97.5<sup>th</sup> percentile</u> of South Africa consumption data) |                                                                                  |
| Dietary exposure to additive               | Focus on water-based flavored                   | Focus on:                                                                      | All foods                                                                        |
| predominantly influenced by                | drink category                                  | • beverages (reported use levels),                                             |                                                                                  |
| one food, use selected                     |                                                 | • or, all foods (analytical)                                                   |                                                                                  |
| individual foods approach                  |                                                 |                                                                                |                                                                                  |
|                                            |                                                 |                                                                                |                                                                                  |
| Model accuracy - food                      | NHANES coupled with market-                     | Not specific                                                                   | Not specific                                                                     |
| consumption data and food                  | weighted levels for same specific               | Descall and the second                                                         |                                                                                  |
| chemical concentration data                | beverage type in 14.1.4.                        | Broadly applied benzoate maximum                                               | Broadly applied benzoate regulatory                                              |
| applied to <u>same</u> specific food;      | A compete model                                 | typical use level (i.e., 209 mg/L) to entire                                   | maximum limit (i.e., 150 mg/L) to entire                                         |
|                                            | Accurate model                                  | 14.1.4. beverage category                                                      | 14.1.4. beverage category (See examples above)                                   |
|                                            |                                                 | (NOTE: Unclear whether water was included under                                |                                                                                  |
|                                            |                                                 | 14.1 relative to consumption amounts)                                          | Outdated analytical data                                                         |
|                                            |                                                 |                                                                                | outdated analytical data                                                         |
| Representative national                    | Representative national markets                 | CIFOCOOss primarily EUMS and China,                                            | EUMS                                                                             |
| populations to understand                  | Brazil, Canada, Mexico, U.S.A. "worst-          | Japan and Philippines (for relevant age                                        |                                                                                  |
| international situation                    | case" scenario markets – adequate global        | breakouts)                                                                     |                                                                                  |
| Chronic evender as even life               | protection                                      |                                                                                | No                                                                               |
| Chronic exceedance over life               | No                                              | No                                                                             | No                                                                               |